Machine learning plus insights from genetic research shows the workings of cells – and may help develop new drugs for COVID-19 and other diseases

August 20, 2021

By Shang Gao, University of Illinois at Chicago and Jalees Rehman, University of Illinois at Chicago 

The Research Brief is a short take about interesting academic work.

The big idea

We combined a machine learning algorithm with knowledge gleaned from hundreds of biological experiments to develop a technique that allows biomedical researchers to figure out the functions of the proteins that turn genes on and off in cells, called transcription factors. This knowledge could make it easier to develop drugs for a wide range of diseases.

Early on during the COVID-19 pandemic, scientists who worked out the genetic code of the RNA molecules of cells in the lungs and intestines found that only a small group of cells in these organs were most vulnerable to being infected by the SARS-CoV-2 virus. That allowed researchers to focus on blocking the virus’s ability to enter these cells. Our technique could make it easier for researchers to find this kind of information.

The biological knowledge we work with comes from this kind of RNA sequencing, which gives researchers a snapshot of the hundreds of thousands of RNA molecules in a cell as they are being translated into proteins. A widely praised machine learning tool, the Seurat analysis platform, has helped researchers all across the world discover new cell populations in healthy and diseased organs. This machine learning tool processes data from single-cell RNA sequencing without any information ahead of time about how these genes function and relate to each other.

Our technique takes a different approach by adding knowledge about certain genes and cell types to find clues about the distinct roles of cells. There has been more than a decade of research identifying all the potential targets of transcription factors.


Free Reports:

Get our Weekly Commitment of Traders Reports - See where the biggest traders (Hedge Funds and Commercial Hedgers) are positioned in the futures markets on a weekly basis.





Sign Up for Our Stock Market Newsletter – Get updated on News, Charts & Rankings of Public Companies when you join our Stocks Newsletter





Armed with this knowledge, we used a mathematical approach called Bayesian inference. In this technique, prior knowledge is converted into probabilities that can be calculated on a computer. In our case it’s the probability of a gene being regulated by a given transcription factor. We then used a machine learning algorithm to figure out the function of the transcription factors in each one of the thousands of cells we analyzed.

We published our technique, called Bayesian Inference Transcription Factor Activity Model, in the journal Genome Research and also made the software freely available so that other researchers can test and use it.

Why it matters

Our approach works across a broad range of cell types and organs and could be used to develop treatments for diseases like COVID-19 or Alzheimer’s. Drugs for these difficult-to-treat diseases work best if they target cells that cause the disease and avoid collateral damage to other cells. Our technique makes it easier for researchers to home in on these targets.

A human cell (greenish blob) is heavily infected with SARS-CoV-2 (orange dots), the virus that causes COVID-19, in this colorized microscope image.
National Institute of Allergy and Infectious Diseases

What other research is being done

Single-cell RNA-sequencing has revealed how each organ can have 10, 20 or even more subtypes of specialized cells, each with distinct functions. A very exciting new development is the emergence of spatial transcriptomics, in which RNA sequencing is performed in a spatial grid that allows researchers to study the RNA of cells at specific locations in an organ.

A recent paper used a Bayesian statistics approach similar to ours to figure out distinct roles of cells while taking into account their proximity to one another. Another research group combined spatial data with single-cell RNA-sequencing data and studied the distinct functions of neighboring cells.

What’s next

We plan to work with colleagues to use our new technique to study complex diseases such as Alzheimer’s disease and COVID-19, work that could lead to new drugs for these diseases. We also want to work with colleagues to better understand the complexity of interactions among cells.

About the Author:

Shang Gao, Doctoral student in Bioinformatics, University of Illinois at Chicago and Jalees Rehman, Professor of Medicine, Pharmacology and Biomedical Engineering, University of Illinois at Chicago

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 

InvestMacro

Share
Published by
InvestMacro

Recent Posts

Gold Falls for the Fifth Consecutive Trading Session

By RoboForex Analytical Department  On Thursday, the price of a troy ounce of Gold is…

19 hours ago

Countries spend huge sums on fossil fuel subsidies – why they’re so hard to eliminate

By Bruce Huber, University of Notre Dame  Fossil fuels are the leading driver of climate…

2 days ago

Profit-taking is observed on stock indices. The data on wages in Australia haven’t met expectations

By JustMarkets At the end of Tuesday, the Dow Jones Index (US30) fell by 0.29%.…

2 days ago

USD/JPY at a Three-Month Peak: No One Opposes the US Dollar

By RoboForex Analytical Department  The USD/JPY currency pair has climbed to a three-month high of…

2 days ago

Can Chinese Tech earnings offer relief for Chinese stock indexes?

By ForexTime  CHINAH, CN50, HK50 falling on fears of heightened US-China trade tensions US president-elect Trump…

2 days ago

Companies are buying up cheap carbon offsets − data suggest it’s more about greenwashing than helping the climate

By Sehoon Kim, University of Florida  Carbon offsets have become big business as more companies…

2 days ago

This website uses cookies.