Sewage-testing robots process wastewater faster to predict COVID-19 outbreaks sooner

March 12, 2021

By Smruthi Karthikeyan, University of California San Diego and Rob Knight, University of California San Diego

The Research Brief is a short take about interesting academic work.

The big idea

By using a sewage-handling robot, our laboratory has been able to detect coronavirus in wastewater 30 times faster than nonautomated large-scale systems. This advance, published in the microbiology journal mSystems, provides even more lead time to communities monitoring their wastewater for early warning about local cases of COVID-19.

When clinical studies emerged showing that people who test positive for SARS-CoV-2 shed the virus in their stool, the sewer seemed like an obvious place to look for it. Wastewater surveillance can be used at the community level to see potential outbreak clusters before clinical diagnosis, especially in areas where COVID-19 prevalence rates far exceed testing rates.

The problem is that the virus is heavily diluted in the waste stream because of how many people’s bathrooms drain into it, not to mention all the other junk they flush. Surveillance depends on concentrating the viral particles from the wastewater to detect these low levels. This viral concentration step is typically the major bottleneck in wastewater analyses because it’s laborious and time-consuming. Our robot system takes a different, quicker approach.

Wastewater treatment plants can be the front lines for coronavirus detection in a community.
San Diego County, CC BY-ND

Why it matters

Cities, schools and businesses around the country are using wastewater surveillance to find coronavirus in their midst.


Free Reports:

Sign Up for Our Stock Market Newsletter – Get updated on News, Charts & Rankings of Public Companies when you join our Stocks Newsletter





Get our Weekly Commitment of Traders Reports - See where the biggest traders (Hedge Funds and Commercial Hedgers) are positioned in the futures markets on a weekly basis.





Wastewater surveillance is especially useful as an early-alert system for high-risk areas, such as communities where undocumented residents may be cautious about individual testing.

The most commonly used viral concentration technique uses filters and can take anywhere from six to eight hours to transform a couple dozen sewage specimens into samples that can then be tested for the presence of SARS-CoV-2. Our new protocol concentrates 24 samples in a single 40-minute run.

We repurposed gear that usually performs microbiology or cell biology tasks in the lab to deal with sewage instead. By miniaturizing and automating our system, we eliminate a bunch of labor-intensive steps, resources and associated costs. And our hands-free process is much quicker.

Researchers gather a liter of sewage collected over the course of the day from a sewer line connected to a UC San Diego building.
C.H. Sheikhzadeh, CC BY-ND

How we do this work

We gather sewage from autosamplers at San Diego’s main wastewater treatment plant, as well as from those we’ve deployed at over 100 manholes on the campus of the University of California, San Diego, which collect sewer samples every 30 minutes through the day.

Then, back in the lab, instead of relying on multiple filter steps, we use tiny magnetic beads to enrich the viral particles. We purchase these nanomagnetic beads that are designed to bind to a variety of respiratory viruses. The sewage-handling robot is equipped with a specialized magnetic head that snags the magnetic beads, with viruses attached. It preferentially fishes out viral particles, leaving behind the rest of the junk in the sewage sample.

Using a robot to automate the sewage concentration process lets us concentrate 24 samples in 40 minutes for each robot. Then the same robot can extract the viral RNA, processing 96 samples in 36 minutes. Finally, we use a polymerase chain reaction to search for the signature genes of SARS-CoV-2, much like a clinical diagnostic test that a lab would run on a patient’s nasal swab.

Overall, our system can process 96 samples in 4.5 hours, dramatically reducing the time from specimen to result.

What’s next

So far, ours is the only coronavirus wastewater study we’re aware of that uses an automated process.

We’re using this technique as a part of our large-scale wastewater surveillance on campus and sampling over 100 locations daily. San Diego school districts are also using it as an early-alert system.

We’re now using the viral genome sequencing part of our system to track the emergence of new SARS-CoV-2 variants.

About the Author:

Smruthi Karthikeyan, Postdoctoral Research Associate in Pediatrics, University of California San Diego and Rob Knight, Professor of Pediatrics and Computer Science and Engineering, University of California San Diego

This article is republished from The Conversation under a Creative Commons license. Read the original article.

InvestMacro

Share
Published by
InvestMacro

Recent Posts

Public health surveillance, from social media to sewage, spots disease outbreaks early to stop them fast

By John Duah, Auburn University  A cluster of people talking on social media about their…

23 hours ago

EUR/USD Steady Ahead of Major US Data Releases

By RoboForex Analytical Department EUR/USD remains stable at around 1.0483 as markets digest the implications…

2 days ago

Donor-advised funds are drawing a lot of assets besides cash – taking a bigger bite out of tax revenue than other kinds of charitable giving

By Brian Mittendorf, The Ohio State University  Donor-advised funds, or DAFs, are financial accounts funded…

2 days ago

NZD/USD Hits Yearly Low Amid US Dollar Strength

By RoboForex Analytical Department The NZD/USD pair has experienced a significant decline, touching a low…

3 days ago

Svalbard Global Seed Vault evokes epic imagery and controversy because of the symbolic value of seeds

By Adriana Craciun, Boston University  Two-thirds of the world’s food comes today from just nine…

3 days ago

This website uses cookies.